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SUMMARY 
The transient two-dimensional Navier-Stokes and energy equations have been solved numerically for flow 
in a horizontal channel heated from below in the Boussinesq limit. For the set of dimensionless parameters 
chosen, the flow consists of periodic transverse travelling waves resulting from a convective instability. The 
solution is proposed as a benchmark for the application of outflow boundary conditions (OBC) in time- 
dependent flows with strong buoyancy effects. Richardson extrapolation in both time and space is used in 
obtaining the solution. Field plots and profiles of velocity, temperature, vorticity and streamfunction at 
selected axial positions and times are also presented from the finest grid and smallest time step calculation. 
The calculations have been made on an extended domain so that the effects of OBC used in the present study 
would be negligible in the test region. 
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1. INTRODUCTION 

Tremendous advances in fluid mechanics in recent years have been made possible by the use of 
computers and computer modelling. Much of this progress can be attributed to the rapid 
evolution of computer technology, specifically the electronics and architecture of computers. 
Because of size limitations of electronic components, it is generally believed that if advances in 
computational fluid mechanics are to continue at the current rate, at least in the foreseeable 
future, new numerical algorithms must be found. One area where such algorithms will have great 
impact is in the proper formulation of boundary conditions necessary for the numerical solution 
of fluid mechanics problems that are defined on infinite or semi-infinite regions. 

Many problems involving fluid flows require solutions of the mass, momentum and energy 
conservation equations on some infinite (or semi-infinite) region. For computational reasons the 
infinite (or semi-infinite) domain is replaced by a finite one and a problem arises concerning how 
to specify boundary conditions at the artificial boundary. To overcome this difficulty and 
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preserve accuracy, it is often necessary to place the artificial boundary far from the region of 
interest. This results in a significant increase in both computer storage and computer time. The 
formulation of 'proper' boundary conditions would allow much more efficient use of com- 
putational resources. To this end we propose a benchmark solution that will allow testing of 
proposed boundary conditions for open channel flows. 

The problem is easily defined and general enough in that both forced and natural convection 
are present and the limiting flow is time-dependent. It consists of a two-dimensional laminar flow 
in a horizontal channel heated from below under conditions which result in a thermoconvective 
instability. The problem has immediate engineering relevance, arising in the fabrication of 
microelectronic circuits using the chemical vapour deposition (CVD) process.' - 6  

In related work, Gage and Reid' performed a linear stability analysis of unstably startified 
plane Poiseuille flow of infinite horizontal extent. They showed that, depending on the values of 
the dimensionless parameters, the form of the instability could vary from travelling transverse 
waves, with axes perpendicular to the main flow direction, to longitudinal rolls, with axes aligned 
with the main flow direction. When the ratio of forced to natural convection forces is small, and 
provided that the flow is unstable, the flow consists of transverse travelling waves. The thermo- 
convective instability in the form of travelling transverse waves has been investigated by Luijkx et 
a[.,' Platten and Legros,' Ouazzani et al." and Evans and Greif.' ' In a recent numerical study," 
travelling transverse waves were predicted for conditions typical of CVD in horizontal channel 
flow reactors. Interest in outflow boundary conditions for time-dependent problems that have 
strong coupling between the momentum and energy equations has provided the motivation for 
proposing such a solution as a benchmark. 

In the following sections we first define the basic problem and describe the numerical 
procedure. Then we present the benchmark solution and discuss its accuracy. Finally, additional 
results obtained from the finest spatial grid and smallest time step solution are presented. It is 
hoped that this benchmark solution will be used as a vehicle for testing and validating computer 
programmes that simulate fluid flows with open boundaries. It is further hoped that such stimulus 
will also lead to the development of new, efficient and accurate algorithms to handle open 
boundary conditions. 

2. PROBLEM DEFINITION 

Consider a two-dimensional rectangular channel of height H whose top and bottom walls are 
respectively maintained at temperatures & and &, where &> q.  The fluid in the channel is 
initially linearly stratified in temperature and is flowing with a parabolic velocity distribution. At 
times larger than zero the same velocity and temperature distributions are maintained at the left 
boundary and the top and bottom solid walls are maintained at temperatures I; and & 
respectively. 

y =  1' ; 
y = o  

x = o  x = A  

Figure 1. Problem definition 
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The equations are non-dimensionalized by reference quantities for length, velocity and temper- 
ature deviation from 'I; by using the channel height H ,  the average inlet flow speed U ,  and the 
temperature difference A T =  - 'I; respectively. Time and pressure are then non-dimensionalized 
by H / U ,  and pbU:  respectively. The geometry and co-ordinate system are shown in Figure 1. 

The problem evolves in time t and is described in two dimensions in terms of the velocity 
components ui=(u, u )  in the x i = ( x ,  y) directions, temperature T and pressure P .  The non- 
dimensional Boussrnesq equations governing the flow in the channel are given by 

-- auj - 0, 
a x j  

1 a z u .  aui a a p  1 
at a x j  I axi  Fr Re axjaxi  

aT a 1 a2T -+- ( ~ j  T ) = -  -, 
at axi Pe axjaxi  

-+ - (v .u . )=  T n . + - - ,  

(3) 

where n, = (0, - 1) is the unit vector in the direction of gravity. The initial and boundary 

The relevant independent dimensionless parameters appearing in the problem are the Reynolds 
number, the Froude number and the PeclCt number: 

Re = U ,  Hlv ,  Fr= V : / B g A T H ,  Pe = U ,  H l a  . (6) 
In the above definitions v and a are the kinematic viscosity and thermal diffusivity respectively, 
B is the coefficient of volume expansion and g is the magnitude of the gravitational field. 

The equations actually solved' account for variable properties. In those equations the 
additional temperature overheat parameter E = (  &- T,)/'I; appears. In the limit E+O (and with 
obvious changes in the non-dimensionalization) those equations reduce to (1)-(3), which are the 
relevant equations in the Boussinesq limit. All reported results have been obtained with E =  

and we have verified that solutions for values of E as large as 0-0333 differ from the reported 
solutions by less than 1 %. The benchmark solution was obtained for the following values of the 
parameters: Re = 10, Fr = 1/150, and Pr = Pe/Re = 2/3, where Pr is the Prandtl number. 

3. NUMERICAL PROCEDURE 

The numerical scheme employed is based on finite differences using a staggered mesh. The finite 
difference equations are obtained by overlaying a staggered grid network on the region of interest. 
The differential equations (1)-(3) with initial and boundary conditions (4) and ( 5 )  are integrated 
over local two-dimensional grid control volumes and finite differences are used to discretize the 
derivatives. All scalar variables are defined at the centre of the volumes, u is defined at the centre 
of their vertical sides and u is defined at the centre of their horizontal sides. A central difference 
formulation is used for all spatial derivatives and a backward Euler method is applied to the time 
derivatives. 
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The fluid velocity is prescribed on the numerical boundaries of the channel. At those points 
lying on a boundary we fix the corresponding velocity component to have the desired value, e.g. 
u = O  at y=O, 1. The other component of velocity and temperature points do not lie on the 
boundary. Hence by quadratic interpolation we force two interior points and a fictitious point 
exterior to the boundary to yield a zero velocity, a constant temperature or a zero flux where 
appropriate. 

Boundary conditions are specified at the channel entry and top and bottom walls. Proper 
conditions at the outflow end are not known. However, for computational purposes, conditions 
need to be specified there. We take the computed channel length L to be two times the longest 
domain proposed for testing OBC and apply the incorrect but usual zero-derivative boundary 
conditions there. This introduces an additional dimensionless parameter in the problem, 

A =  LIH. (7) 
We emphasize that this parameter arises only because of our need to solve a finite region on the 
computer, and the solution within the computed region should not depend on the size of A 
provided it is large enough to contain several travelling waves (see below). 

The solution method is semi-implicit and is based on the TEACH code.I2 The momentum and 
energy equations are solved implicitly along lines that are normal to the channel surfaces and the 
equation for pressure is solved implicitly along lines both normal and parallel to the channel 
surfaces in an alternating fashion. The SIMPLER method described by PatankarI3 is used to 
determine the pressure field. Underrelaxation factors of 0.9 and 0.8 are used in the solution of the 
momentum and energy equations respectively. There is no underrelaxation of the pressure 
equation. At each time step, to obtain an accurate transient solution, the equations are iterated 
until the following convergence criteria are achieved: at each grid point and for each dependent 
variable the relative and absolute changes from one iteration to the next must be less than 
5 x and 1 x respectively. The residuals of the equations (absolute values summed over 
the grid and normalized by the number of control volumes) are also checked and typical values at 
convergence are between and Global energy and momentum balances are within 1% 
at each time step. The sufficiency of these criteria has been checked and was reported 
previously. 

In all cases the calculations were continued until the effects of the initial conditions were 
negligible. This was determined by integrating equations (1)-(3) until the time average of the 
spatially averaged Nusselt numbers on the bottom (b) and top (t) surfaces of the channel changed 
by less than 0.1%. The time-averaged Nusselt numbers are defined as 

where t,--t, is a time interval that is large compared to the period of the oscillation and 

For example, for the finest grid and smallest time step we used t ,  - t ,  = 6 and 12, where t ,  is the 
time at the end of the computation. The variations of the local quantities urnax and urnax, the 
maximum values of the horizontal and vertical components of velocity respectively, over these 
time intervals were also determined to be less than 0 1  YO. 
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As noted above, the domain that is being simulated is infinite but for computational economy 
must be restricted. In the present problem, to adequately simulate the relevant physics consisting 
of the travelling wave instability, the domain should be large enough to include the initial 
formation of the instability, several wave cycles and whatever additional length (hopefully short) 
is necessary to account for effects of the application of the outflow boundary conditions. Since one 
to two channel heights are necessary for the initial wave development and the wavelength was 
found to be approximately 1.5, it seems appropriate to restrict the region of interest to O<x< 10 
for the present problem. Furthermore, because we are applying simple zero-axial-derivative 
boundary conditions and do not want the effects of these incorrect conditions to affect the region 
of interest, we have simulated a channel with A = 20. To verify that A = 20 is sufficient, we made 
detailed comparisons of the wavelength of the thermal instability, 1, and the maximum of the 
vertical component of velocity, urnax, throughout the channel in two cases, (1) A =  10 and 
(2) A =20, both with (Ax, Ay, At)=(01 ,  0.05, OeOSJFr) .  Specifically, we found that in the 
region 2,<x<8 the values of these quantities agreed to better than 0 3 % .  Not only was the 
deviation between the cases within the stated amount but also the variation of the quantities 
within each case was within this tolerance. For case (2) this level of agreement extended from 
2 6 x < 18. Owing to differences in the non-dimensionalization discussed in Section 2, we present 
the time step in a manner that shows the values we actually used. 

4. BENCHMARK SOLUTION 

Richardson extrapolation in both time and space was used to obtain the benchmark solution. 
Using the result of computation i for a given dependent variablefi , the exact value f is assumed 
obtainable from the formula 

f = f i + c l A t ~ + C ; A x ; + C ~ A Y ; +  . . . (1 1) 

It can be easily shown that for our numerical scheme rn = 1 and n = 2. In other words, the scheme 
is first-order-accurate in time and second-order-accurate in space. Then we can rewrite 

fi =f-(ci Ati + ~ 2 A t :  + ~3 At? + . . . ) -(Cl AX: + C2Axf + C ~ A X ~  + * . ), (12) 

where C j =  C J +  Cyy2J and y = Ayi/Axi .  The grid aspect ratio y is kept constant for all com- 
putations with a value of 1/2. Five independent computer runs were made, three that varied the 
time step by factors of two and three that varied the spatial grid size by factors of J2 (one run 
was common to both of these variations). Using the five independent computations we are able to 
write five independent equations allowing us to eliminate c1 , c 2 ,  C ,  and C2 and to obtain the 
extrapolated value 

f,=f-(cgAt3+ * .  *)--(C3Ax6+ . . .). (13) 
The extrapolated result is third-order-accurate in time and sixth-order-accurate in space. Note 
that c j  and Cj depend on time and space derivatives respectively evaluated at the same time and 
spatial location as the functionfi . In order for the extrapolation to be accurate, c j  and Cj should 
be approximately constant. This is only possible if values of Ati and Axi are chosen sufficiently 
small as to give a good representation of the solution. 

The results from the individual computations and the extrapolated benchmark solution are 
presented in Table I, where 7 is the temporal period of the oscillation. The quantities shown in 
Table I were those deemed to be of most interest and/or that best characterize the problem. We 
point out that the intermediate spatial grid spacing A x = O l / J 2  was approximated using 285 
x-grid lines and the corresponding Ay=0*05/,/2 was approximated with 30 y-grid lines. As a 
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Table I. Numerical and extrapoiated results 

[Ax ,  At1 

[OI, 0.2JFi-l [O.l,o.l,/Fr] [O.l,O.O5,/Fr] [0.1/,/2,0.05,/Fr] COOS, O.O5,/Fr] Extrapolated 

1.2544 
1.3526 
2.549 
3.9520 
0.8033 

0.1353 
4.7501 
0.5109 

0.4896 

-2.4102 

-4.7610 

1.2618 
1.3549 
2.583 
4.0217 
0.8056 

0.1361 
4.8625 
0.5119 

0.488 1 

-2.4879 

-4.861 1 

1.2669 
1.3571 
2604 
4.0583 
0.8047 

0.1 366 
4,9076 
0.5124 

0.4873 

-2'5337 

- 4.9 192 

1.2901 
1.4006 
2.568 
4.2115 
0.8039 

0.1378 
4.9507 
0.5107 

0.4892 

-2.6137 

-4.9511 

1.3064 
1.4221 
2.551 
4.2901 
0.8047 

- 26495 
0.1402 
4.9724 
0.5098 

0.4903 
-4.9709 

1.3319 
14465 
2.5583 
4.3958 
0.8040 

- 2.7329 
0,1444 
5.03 19 
0.5094 

0.4907 
- 5.0587 

result there are small deviations in the x- and y-grid positioning of 0.05% and 1.0% respectively 
from the desired values for the application of Richardson extrapolation to three independent 
spatial solutions applied to the same location. On the basis of the maximum variation of the 
dependent variables, we estimate that these deviations result in a maximum uncertainty of 1 % in 
the values reported in Table I. 

The results of the extrapolation shown in Table I are approximately within 1%-2% of the 
finest grid and smallest time step solution for all values. We believe that this variation represents 
an upper bound on the error of the extrapolated results. 

We note that because the time step size has been treated as an independent parameter from the 
spatial step size in the extrapolation procedure, it is not possible to show simply the rate of 
convergence or the error of the solution by plotting these quantities as a function of grid spacing 
in the usual manner.I4*l5 From Table I it can be seen that moving from left to right along any 
row, the variable changes as either the time step or the spatial grid is refined. The changes are 
monotonic with refinement of either the time step or the spatial step, but not necessarily 
monotonic when both are refined. 

One interesting physical observation is that the thermal wave speed A/r= 1-09 is greater than 
unity, indicating that the rolls move faster than the average speed of the flow.' 

5. ADDITIONAL RESULTS 

Field plots of velocity vectors and streamline, vorticity, pressure and temperature contours over 
the first half of the computed domain, x =  [0, lo], are shown in Figure 2, at a time t ,  that 
corresponds to a minimum in the temperature at the position x=5.0, y = 0 5  The absolute value 
of this time is arbitrary, but for the period shown in Figure 3 it corresponds to t,=05226. The 
rest of the results are all obtained at this value of time. The parabolic velocity profile at x=O is 
evident and the velocity at x = 10 is never perpendicular to the outflow boundary (shown in detail 
later. The flow consists of travelling roll cells (waves) whose axes are normal to the x-y plane. At 
any instant of time, approximately six cells occupy the region of interest; the start-up region of 
length 1.5-2.0 is evident at the left side of each plot. The length of the start-up region as well as the 
region of the flow affected by the incorrect outflow conditions can be seen even more clearly in 
Figure 4. In this figure we plot the maximum velocity components as functions of the longitudinal 
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Figure 2. Solution fields at t = t , :  (a) v; (b) $, -0.6862(0.1172) 1.6578; (c) o, -71.45 (6.793) 64.41; (d) P,  -65.54 (6.106) 
56.58; (e) T, 0 (0.05) 1 

0 . 2 1  
0 000 25 0 50 0 75 1 00 1 2 5  

t 
50 

Figure 3. Temperature sample at (x, y) =(5,0.5) 

co-ordinate. It can be readily seen that the incorrect outflow boundary condition corrupts the 
flow up to about four vertical heights upstream of the outflow. Note that in the figure the symbols 
represent the locations of the maxima at t , ,  but since the rolls are convected downstream, the 
maxima occur for all values of x during one period. This last point is noted by passing a line 
through the symbols in the figure. As can be seen from Table I, the vertical velocity appears to be 
antisymmetric, since u,,, z - urnin, although the y-positions of the maxima and minima do not 
occur at y = 0.5. We note (not shown) that the excursions of temperature and vertical velocity 
component about the mid-height of the channel are antisymmetric. Also noted and shown in 
Table I is the fact that the retrograde motion within a roll is not as lage as the motion in the +x- 
direction ( ~ u m a X ~  >Iuminl). This is due to the fact that forced convection is superimposed on the 



5 . 2 5  I 

4 . 0 0 1  
0 . 0  5.0 10.0 15.0 i 

5 
1.0 

Figure 4. Maxima in u- and u-components of velocity and the longitudinal positions of these maxima at t =  t, as functions 
of the longitudinal co-ordinate: +, urn..; x , u,,, 

-40.0 ! I I I 

0.0 5 . 0  10.0 16.0 20.0 
X 

Figure 5. Periodic component of longitudinal pressure gradient at y=0.5 and t = t, as a function of the longitudinal co- 
ordinate 

0.00 1.25 2 . h  3:75 5.00 

0.00 1.25 2 h  3.75 5.00 
, 

0.00 1.25 2.50 3:75 
, 

0.00 1.25 2 . h  3.75 5:oo 
, 

Figure 6. Solution fields at t=t,: (a) v; (b) $, -0.6862 (0.1172) 1.6578; (c) w, -71.45 (6.793) 64.41; (d) P, -65.54 (6.106) 
56.58; (e) T, 0 (0.05) 1 
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Figure 7. Distributions at x =  10 and t = t ,  as functions of y: (a) -, u and ---, u; (b) +; (c) o; (d) P; (e) T 
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motion owing to the thermal instability. Close examination of the pressure contours in 
Figure 2(d) reveals that the pressure field is not periodic. However, as shown in Figure 5, a 
periodic component is superimposed on the overall constant pressure gradient in the x-direction 
that corresponds to the Poiseuille flow (dP/dx = - 12/Re). The figure shows the periodic 
component at y = 0 5  as a function of longitudinal position in the channel at time t ,  . We note (not 
shown) that the amplitude of the pressure oscillations is a function of the y co-ordinate. In 
Figure 6, enlargements of the same field plots of Figure 2 are shown over the domain x = [0 ,5] .  

In Figure 7 we present profiles of velocity, streamfunction, vorticity, pressure and temperature 
across the plane x = 10 at time t ,  . In addition, in Figure 8 we display the distributions of au/ ax, 
au/  ax, aP/  dx and aT/ dx at the same location. The corresponding profiles and distributions at the 
plane x = 5  are given in Figures 9 and 10. It is hoped that such results provide sufficient useful 
information for selecting proper outflow boundary conditions. Note that both the x- and y- 
components of velocity are positive at x = 10 whereas at x = 5, u is positive and u is negative across 
the entire plane. The profiles of vorticity at both planes are quite complex. 
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0 0.0 0.2 0.4 0.6 0.8 1.0 

Y 
Figure 8. Distributions of longitudinal derivatives at x = 10 and t = t ,  as functions of y: (a) au/ ax;  (b) au/ ax; (c) aP/ ax;  

(d) a T j a x  
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Figure 9. Distributions at x = 5  and t =  t ,  as functions of y: (a) -, u and ---, v; (b) $; (c) a; (d) P; (e) T 
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au 
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D.0 0.2 0.4 0.6 0 @ 1 0  
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0.0 0 2 0.4 0.6 0 8 

Y Y 
Figure 10. Distributions of longitudinal derivatives at X =  5 and t = t ,  as functions of y: (a) au/ax; (b) &/ax;  (c) d P / a x ;  

(d) a T/ ax 

6. CONCLUSIONS 

A proposed benchmark solution of a time-dependent fluid flow and heat transfer problem that 
exhibits strong buoyancy effects coupled to a base-forced flow has been presented for the purpose 
of testing outflow boundary conditions. Results from five independent numerical computations 
have been used in a Richardson extrapolation procedure to obtain a solution that is accurate to 
third order in time and sixth order in space. The results of the extrapolated solution agree with 
those of the finest grid and time step numerical solution to within 2%. The solution was obtained 
on an extended domain so that minimal effects of the outflow boundary conditions used in the 
solution algorithm would occur in the proposed test domain. Tabulated quantities, field plots and 
profiles of the dependent variables at two axial locations have been presented to provide the 
information needed for the evaluation of the impact of outflow boundary conditions on the 
solution within the computational domain. 
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